Bayesian Classification

Bayesian Classification

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- **Foundation:** Based on Bayes' Theorem.
- Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Basic Formulas for Probabilities

Product Rule : probability P(AB) of a conjunction of two events A and B:

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Sum Rule: probability of a disjunction of two events A and B:

$$P(A+B) = P(A) + P(B) - P(AB)$$

Theorem of Total Probability : if events A_1, \ldots, A_n are mutually exclusive with

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Basic Approach

Bayes Rule: $P(h \mid X) =$

$$P(h \mid X) = \frac{P(X \mid h)P(h)}{P(X)}$$

- P(h) = prior probability of hypothesis h
- $\blacktriangleright P(X) = \text{prior probability of training data } X$
- $\blacktriangleright P(h \mid X) = \text{probability of } h \text{ given } X \text{ (posterior density)}$
- P(X | h) = probability of X given h (likelihood of X given h)
 The Goal of Bayesian Learning: the most probable hypothesis given the training data (Maximum a Posteriori (MAP) hypothesis h_{map})

$$h_{map} = \max_{h \in H} P(h \mid X)$$
$$= \max_{h \in H} \frac{P(X \mid h)P(X)}{P(X)}$$
$$= \max_{h \in H} P(X \mid h)P(h)$$

Towards Naïve Bayesian Classifie

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an *n*-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are *m* classes $C_1, C_2, ..., C_m$.
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|X)$
- This can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i | \mathbf{X}) = P(\mathbf{X} | C_i) P(C_i)$$

needs to be maximized

Naïve Bayesian Classifier: Training Datase

Class:

 $C_1:buys_computer = 'yes'$ $C_2:buys_computer = 'no'$

Data sample X = (age <= 30, Income = medium, Student = yes Credit_rating = Fair)

age	income	student	<mark>redit_ratir</mark> :	com	
<-30	high	no	fair	n0	
30	high	no	excellent	no	
3140	high	no	fair	yes	
>40	medium	no	fair	yes	
>40	low	yes	fair	yes	
> 10	low	yee	excellent	no	
3140	low	yes	excellent	yes	
<-30	medium	no	fair	no	
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium		excellent		

Naïve Bayesian Classifier: Training Datase

Class: C₁:buys_computer = 'yes' C₂:buys_computer = 'no'

Data sample X = (age <= 30, Income = medium, Student = yes Credit_rating = Fair)

age	income	studen	tredit_rati	าดู	_com
<=30	high	no	fair		no
<=30	high	no	excellent		no
3140	high	no	fair		yee
>40	medium	no	fair		yes
<i>></i> 40		yes			yes
>40	low	yes	excellent		no
<mark>314</mark> 0		yes	excellent		yes
<=30	medium	no	fair		no
<-30	low	yee	fair		yee
-40	medium	yes			yes
<=30	medium	yes	excellent		yes
3140	medium	no	excellent		yes
31 40	high	VAS	fair		VAS
>40	medium	no	excellent		no
	age <=30 <=30 3140 >40 >40 >40 3140 <=30 <=30 <=30 <=30 <=30 2140 >40	ageincome $<=30$ high $<=30$ high 3140 high >40 medium >40 low >40 low 3140 low $<=30$ medium $<=30$ medium $<=30$ low $<=30$ medium	ageincomestuden<=30	ageincomestudentredit_rati<=30	ageincomestudentredit_ration<=30

Naïve Bayesian Classifier: An Example

P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14 = 0.357

Compute P(X|C_i) for each class
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222</p>
P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6</p>
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>
P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 x 0.643
= 0.028
P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 x 0.357
= 0.007

Therefore, X belongs to class ("buys_computer = yes")